

Counterfactual Debiasing Inference for Compositional Action Recognition

Pengzhan Sun*, Bo Wu*, Xunsong Li, Wen Li, Lixin Duan, Chuang Gan

University of Electronic Science and Technology of China & MIT-IBM Watson AI Lab

Introduction

Compositional action recognition[1]:

- Motivated by the appearance bias
- Learn real action knowledge
- How to split
 - Actions -> Group 1 Group 2
 - Object -> Group A Group B
 - Training set {1+A, 2+B}
 validation set {1+B, 2+A}
- **Target:** Recognize action with unseen object appearance

[1] Joanna Materzynska, Tete Xiao, Roei Herzig, Huijuan Xu, Xiaolong Wang, and Trevor Darrell. 2020. Something-Else: Compositional Action Recognition With Spatial-Temporal Interaction Networks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1046–1056.

Related Work

- Previous Work
 - Decreasing the dependency on instance appearance: STIN[1]
 - Fusing visual information with structure information: SAFCAR[2] and Interactive Fusion[3]

 Joanna Materzynska, Tete Xiao, Roei Herzig, Huijuan Xu, Xiaolong Wang, and Trevor Darrell. 2020. Something-Else: Compositional Action Recognition With Spatial-Temporal Interaction Networks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1046–1056.
 Tae Soo Kim and Gregory D. Hager. 2020. SAFCAR: Structured Attention Fusion for Compositional Action Recognition. abs/2012.02109 (2020). arXiv:2012.02109

[3] Rui Yan, Lingxi Xie, Xiangbo Shu, and Jinhui Tang. 2020. Interactive Fusion of Multi-level Features for Compositional Activity Recognition. arXiv:2012.05689

Novelty

- Shortcoming of Existing Methods
 - Ignore the negative effect introduced by instance appearance bias
 - Obvious improvement achieved after breaking visual correlation by CutMix[4] and mixup[5]

Method	original	mixup	
Image	- Contraction		De.
Top-1 (%) Top-5 (%)	50.5 76.9	55.4 80.8	55.9 81.4

 [4] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. 2019. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
 [5] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017).

Novelty

- Causal graph for compositional action recognition
- Counterfactual Debiasing Network (CDN)

S: structure information A: appearance information F : fusion information Y: prediction scores Light node: real value input dark node: dummy value input

• Design

Proposed model

- Architecture
 - > No strict requirements in the specific implementation
 - The factual outcome: fusion of three branch activation
 - > The counterfactual outcome: fusion of one branch activation and two zero values

Proposed model

- Implementation
 - > Appearance model output: Z_a
 - \succ trajectory model output: Z_s
 - \succ fusion model output: Z_f
 - > The fusion function's output: $Z_{a,s,f} = h(Z_a, Z_s, Z_f)$
 - ▶ The fusion function: $h(\cdot) = \log(\sigma(sum(\cdot)))$
 - Choose total indirect effect as our criterion:

$$TIE = Z_{a,s,f} - Z_{a,s^*,f^*} \approx Z_{a,s,f} - \alpha \cdot Z_{a,s^*,f^*}$$

The subscribe * represents the null input The parameter α represents the effect weight we remove.

Mathad	Input		Something-Else	
Method	RGB	Track	Top-1 (%)	Top-5 (%)
I3D	0		50.5	76.9
STIN		0	51.4	79.3
STIN+I3D	0	0	54.6	79.4
Interactive Fusion	0	0	59.6	85.8
SAFCAR	0	0	60.5	84.3
Our CDN w/o CF	0	0	62.8	87.3
Our CDN	0	0	64.5	88.2

Case study

Holding [sth.] in front of [sth.]

W/o cf : *Holding* [sth.] in front of [sth.] With cf: Touching part of [sth.]

- We observe that prior knowledge learned from appearance information is mixed with the spurious correlation between action and instance appearance, which badly inhibits the model's ability of action learning.
- We remove the pure appearance effect from total effect by counterfactual debiasing inference on our novel framework CDN proposed for compositional action recognition.
- We achieve state-of-the-art performance for compositional action recognition on the Something-Else dataset.

Thanks for Your Attention!