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ABSTRACT
Compositional action recognition is a novel challenge in the com-
puter vision community and focuses on revealing the different
combinations of verbs and nouns instead of treating subject-object
interactions in videos as individual instances only. Existingmethods
tackle this challenging task by simply ignoring appearance informa-
tion or fusing object appearances with dynamic instance tracklets.
However, those strategies usually do not perform well for unseen
action instances. For that, in this work we propose a novel learning
framework called Counterfactual Debiasing Network (CDN) to im-
prove the model generalization ability by removing the interference
introduced by visual appearances of objects/subjects. It explicitly
learns the appearance information in action representations and
later removes the effect of such information in a causal inference
manner. Specifically, we use tracklets and video content to model
the factual inference by considering both appearance information
and structure information. In contrast, only video content with ap-
pearance information is leveraged in the counterfactual inference.
With the two inferences, we conduct a causal graph which captures
and removes the bias introduced by the appearance information by
subtracting the result of the counterfactual inference from that of
the factual inference. By doing that, our proposed CDN method can
better recognize unseen action instances by debiasing the effect of
appearances. Extensive experiments on the Something-Else dataset
clearly show the effectiveness of our proposed CDN over existing
state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding; Causal reasoning and diagnostics.
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1 INTRODUCTION
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Figure 1: Examples of non-overlapping object-action compo-
sitions. The action model never sees [squeezing paper] dur-
ing training, but sees [paper] occurred in action [poking].
Thus it gives prediction [poking] according to the object cor-
relation instead of [squeezing] according to the action corre-
lation when being tested with sample [squeezing paper].

Action recognition [3, 12, 23, 38] has been receiving much at-
tention in computer vision area for many years. Benefited from
the distribution learning power of deep networks, mainstream ac-
tion recognition models [3, 8, 10, 13, 14, 25, 34, 37, 38] attempt to
learn effective representations of observed dynamic actions from
videos. However, it’s still difficult to recognize a seen action when
facing to never seen objects. Therefore, a recent research [27] pro-
poses a novel challenge: compositional action recognition. In the
setting of this task, combinations of an action and instances are
not overlapped in the training set and the test set as shown in
Figure 1. For existing action recognition methods, compositional
action recognition is still an open-issue. Because they rely heavily
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Figure 2: The illustrated example shows the counterfactual debiasing inference for compositional action recognition. Factual
inference depicts the actual situation where the model considers appearance information, structure information and their
fusion information together to give a prediction. Counterfactual inference depicts the virtual scenario where the model con-
siders appearance information only. Total indirect effect used as the criterion is obtained by subtracting natural direct effect
from total effect. Detailed explanation of causal graph refers to Figure 3.

on the correlation between the visual features and the prediction
results [7, 22] which learned by data-driven methods. When in-
stances and actions in given test samples combine in a way that the
model has not seen before, the model will tend to give the wrong
prediction results based on the prior distribution of the seen visual
clues.

An intuitive solution to tackle the challenge is to break the ob-
ject appearance dependency when learning a dynamic interaction,
which means to inhibit the co-occurrence bias in the same action
with distinct objects. By capturing the instance tracklet of an action
(a continuous set of bounding boxes coordinates), Spatial-Temporal
Interaction Network [27] achieves comparable performance against
I3D [3]. But the strategy excusably fails when actions are associ-
ated more with the changes in terms of the intrinsic property of an
object, such as “poking” and “tearing”. Besides, there is another line
of works [21, 44] insisting that visual information contains effec-
tive cues for compositional action recognition. Based on attention
mechanism [21] or the auxiliary prediction task [44], fusing appear-
ance information and structure information [1, 18, 21, 26, 40] brings
observed improvements. However, the potential risk of appearance
interference has not been solved positively in these fusion methods.

To address the aforementioned problems, in this paper, we pro-
pose a novel framework called Counterfactual Debiasing Network
(CDN) by explicitly control the effect of instance appearance for
compositional action recognition. Our motivation comes from the
fact that the instance appearance contains both beneficial and harm-
ful cues for compositional action recognition. As a result, the tra-
ditional appearance dependency decreasing methods or the ap-
pearance fusing methods cannot well handle this issue. We think

counterfactual debiasing inference [28, 30, 31] offers a rational way
to address such situation. Based on the counterfactual debiasing
inference, we consider that action knowledge learned from instance
appearance can be divided into two components in the causal graph.
One is the bias which can be represented by the direct effect of
appearance information, and the other is an effective cue that can
be captured by the indirect effect through fusion information on
final prediction results. With this perspective, we then propose
a counterfactual debiasing inference framework to perform unbi-
ased action prediction for compositional action recognition. By
conducting counterfactual debiasing inference on the causal graph,
we remove natural direct effect from total effect. More specifically,
in the training stage, the classification result of the model comes
from the joint contribution of appearance information 𝐴, structure
information 𝑆 and their fusion information 𝐹 . While in the test
phase, as illustrated in Figure 2, we empower CDN the ability of
counterfactual analysis so that a more accurate classification re-
sult can be gained by comparing factual inference outcome and
counterfactual inference outcome:

Factual Inference:What will action be, if model ob-
serves appearance information, structure information
and fusion information of the above two?

Counterfactual Inference:What would action be, if
model observes appearance information, but had not
observed structure information and fusion information?

To be specific, as shown in Figure 2, given a test video with the
ground truth label [squeeze something], CDN first makes factual
inference to predict classification scores based on the observed
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appearance and tracklets of [paper], which is denoted as total ef-
fect. As for Total Effect (TE), scores of [tear something] and [move
something] are higher than the correct answer [squeeze something]
influenced by the appearance model activation. This is because
instance [paper] involved in video samples with labels [tear some-
thing] and [move something] for themost samples in training set. For
the second step, CDN conducts counterfactual inference to output
classification scores only based on the appearance of [paper], which
can be denoted as Natural Direct Effect (NDE) on classification re-
sults. The score of the wrong answer [tear something] dominates in
NDE, for the model is cheated by the unreliable correlation learned
only from appearance information. At the last step, by subtracting
NDE from TE, the model gives its debiased final prediction [squeeze
something] by thinking twice and comparing the answers obtained
from factual inference and counterfactual inference. We verify the
effectiveness of our approach on the challenging Something-Else
task from the Something-Something V2 dataset [15]. CDN using
Total Indirect Effect (TIE) as criterion achieves 4.0% top-1 accu-
racy and 3.9% top-5 accuracy improvement over state-of-the-art
performance.

Our contributions can be summarized as follows:

• We observe that prior knowledge learned from appearance
information is mixed with the spurious correlation between
action and instance appearance, which badly inhibits the
model’s ability of action learning.

• We remove the pure appearance effect from total effect by
counterfactual debiasing inference on our novel framework
CDN proposed for compositional action recognition.

• We achieve state-of-the-art performance for compositional
action recognition on the Something-Else dataset.

2 RELATEDWORK
2.1 Compositional Action Recognition
Compositional action recognition [27] makes the combination of
objects and actions disjoint between training and testing. This
non-overlapping splitting leads to appearance bias becoming a
major problem when learning actions. To tackle this issue, [27]
proposed Spatial-Temporal Interaction Network (STIN) to repre-
sent actions by leveraging instance bounding boxes only to model
the transformation of object geometric relations in both spatial
and temporal domain. STIN generalizes well over some actions
associated with object movements but fails to recognize actions
about the intrinsic state changes of objects. To model such more
complex actions, RGB information is introduced and fused with
the spatio-temporal geometric information obtained from instance
bounding boxes [21, 44]. [21] designs an attention mechanism to
fuse this structure information from instance bounding boxes and
visual information from RGB frames. [44] fuses these information
in object-level and designs an auxiliary prediction task to guide the
fusion process. In this paper, we focus on mitigating the appearance
bias by conducting counterfactual debiasing inference based on the
proposed causal graph.

2.2 Causal Inference in Computer Vision
Causal inference has recently inspired a wide range of works in
computer vision community, which includes scene graph genera-
tion [5, 35], image recognition [35], video analysis [6, 9, 45], few-
shot learning [47], zero-shot learning [46], semantic segmenta-
tion [49], and vision-language tasks [4, 32, 36, 42]. Among them, the
idea of counterfactual reasoning has achieved promising results and
make a step towards unbiased prediction in many tasks, especially
in Visual Question Answering [29]. We need to mention that the
types of bias between VQA and Compositional Action Recognition
are different. For Compositional Action Recognition, the bias in the
task comes from the combination distributions of verbs and nouns.
Such bias from the composition is widespread in the real world
and can hardly be avoided during dataset construction. In contrast,
the bias in VQA comes from the imbalanced sample distribution of
the dataset. In this work, we provide a new comprehension with
the counterfactual debiasing inference perspective for the composi-
tional action recognition task, for the spurious correlation exists
from visual appearance when recognizing actions.

3 METHODOLOGY
Based on the analysis on the Something-Else dataset, we first ob-
serve that the prior knowledge learned from spurious visual correla-
tion seriously inhibits the model ability of action learning. To solve
this problem, we propose a causal graph for the compositional ac-
tion recognition from the causal inference view. Then we introduce
how to get unbiased prediction classification results using coun-
terfactual debiasing inference on this causal graph. Finally, a novel
counterfactual debiasing inference framework for compositional
action recognition is given to verify our approach.

3.1 Graphical Causal Model
3.1.1 Appearance Bias in Compositional Action Recognition. Let
us first take a closer look at the role of the prior action knowledge
learned from appearance information. We break the correlation
between object appearance and action categories by leveraing Cut-
Mix [48] and mixup [50] operations on the level of instances to
explore the effect of object appearance on action predictions. For
instance-level CutMix, given a video sample, each object in it is cut
out according to its bounding box coordinates. Another object is
sampled from the training set randomly, then resized and pasted
to this given video. Similarly, we leverage mixup at the instance
level. Different from [50], we fix the mixup weight as 0.5. We ob-
serve significant improvements in the performance of appearance
model I3D as illustrated in Table 1. It shows that the prior action
knowledge provided by objects involved in videos is mixed with
the spurious correlation, which badly inhibits action learning and
misleads the model to converge in this unreliable shortcut between
instance appearance and action categories.

3.1.2 Causal Graph. A causal graph is constructed with four vari-
ables which includes instance appearance information A, action
structure information S, fusion information F and model prediction
Y, which is illustrated in Figure 3(a). It is a directed acyclic graph
G = {N , 𝜀}, showing how a set of variables interact with each other
through causal effect links.
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Table 1: Performance of I3D with instance-level CutMix and
mixup on the Something-Else dataset. A noticeable improve-
ment is profited from breaking the combinations of actions
and instances.

Method I3D [3] with
original CutMix [48] mixup [50]

Image

Top-1 (%) 50.5 55.4 55.9
Top-5 (%) 76.9 80.8 81.4

𝐴

𝑆

𝐹 𝑌

(a)

➖ 𝑌𝐹

𝑠∗

𝑎∗

𝑎

𝑠

𝑎

𝐹 𝑌

(b)

Figure 3: (a) Causal graph for compositional action recogni-
tion. 𝑆 : structure information. 𝐴: appearance information.
𝐹 : fusion information. 𝑌 : prediction scores. (b) Counterfac-
tual analysis between factual inference outcome and coun-
terfactual inference outcome given a video sample and cor-
responding observed values 𝑎 and 𝑠. Light node denotes real
value input while dark node denotes dummy value input.

Our causal graph designed for the compositional action recog-
nition task is highly general, which imposes no constraints on the
implementation details. Now we give a detailed description of each
node and link.
Node A (Appearance Backbone & Instance Appearance In-
formation): A video appearance feature extractor (we use I3D in
our implementation) is fixed into this node. Given a video sample
𝑉 , this node outputs video-level appearance representation 𝐴:

𝐼𝑛𝑝𝑢𝑡 : {𝑉 } ⇒ 𝑂𝑢𝑡𝑝𝑢𝑡 : {𝐴},

where 𝐴 is aggregated from multiple instances’ appearance feature.
The appearance information of instances contains useful contextual
information and bias that misleads the model. However, existing
compositional action recognitionmethods can only choose to accept
or reject appearance information as a whole. We will describe how
tomake unbiased action predictions based on the biased appearance
information.
Node S (Structure Backbone & Action Structure Informa-
tion): Tracklets of instances in the video are available through
the object detector [16, 33] and tracker [2, 19]. The action structure
module takes tracklets of instances as input and outputs action
structure information [21, 40] 𝑆 :

𝐼𝑛𝑝𝑢𝑡 : {𝑉 } ⇒ 𝑂𝑢𝑡𝑝𝑢𝑡 : {𝑆}.

Tracklets of each instance depict how it moves and interacts with
others, which are abstract and essential representation of actions
and provide critical cues for correct prediction. Also, they denote
unbiased information for action learning since object categories
and visual information are not involved. [27] has shown that this
representation of an action will achieve superior results than other
state-of-the-art convolution-based video models.
Links {A, S} → F (Appearance and Structure Information
Input for FusionModule):Appearance information and structure
information are transposed to a fusion module to generate a better
video-level representation. The effectiveness of fusion between
appearance information and structure information is verified in [21],
where a particular attention module guides the fusion process and
leads to a better generalization ability for compositional action
recognition.
Node F (Fusion Module & Video Fusion Information): Given
the appearance information 𝐴 and the structure information 𝑆 of
a video, the fusion module aggregates them into the video fusion
information 𝐹 , which is more comprehensive than either.

𝐼𝑛𝑝𝑢𝑡 : {𝐴, 𝑆} ⇒ 𝑂𝑢𝑡𝑝𝑢𝑡 : {𝐹 }.

Different modules of fusing instance appearance information and
action structure information can be applied in this node, such as
bilinear pooling [24, 41], attention mechanisms [21, 39, 43], and
other approaches [11, 34]. For simplicity, we use a concatenation
operation following with fully connected layers as the fusion mod-
ule.
Link {A,S,F } →Y (Classifiers): This procedure can be formal-
ized as:

𝐼𝑛𝑝𝑢𝑡 : {𝐴} ⇒ 𝑂𝑢𝑡𝑝𝑢𝑡 : {𝑍𝑎},
𝐼𝑛𝑝𝑢𝑡 : {𝑆} ⇒ 𝑂𝑢𝑡𝑝𝑢𝑡 : {𝑍𝑠 },
𝐼𝑛𝑝𝑢𝑡 : {𝐹 } ⇒ 𝑂𝑢𝑡𝑝𝑢𝑡 : {𝑍 𝑓 },

where 𝑍𝑎 , 𝑍𝑠 and 𝑍 𝑓 are classification scores corresponding to 𝐴, 𝑆
and 𝐹 mentioned above. It is worth mentioning that 𝑍𝑎 is a biased
classification result, and we will reduce this effect caused by bias
in the subsequent counterfactual debiasing inference part.
NodeY (Fusion Function&ActionClassificationResult):The
final classification prediction score 𝑍𝑎,𝑠,𝑓 is generated by fusing all
activation {𝑍𝑎, 𝑍𝑠 , 𝑍 𝑓 } using a score fusion function.

𝐼𝑛𝑝𝑢𝑡 : {𝑍𝑎, 𝑍𝑠 , 𝑍 𝑓 } ⇒ 𝑂𝑢𝑡𝑝𝑢𝑡 : {𝑍𝑎,𝑠,𝑓 }.

We try two fusion functions in our implementation: 1) Naive Sum:
𝑍𝑎,𝑠,𝑓 = 𝑍𝑎 +𝑍𝑠 +𝑍 𝑓 2) Log-sigmoid Sum [29]: 𝑍𝑎,𝑠,𝑓 = 𝑙𝑜𝑔(𝜎 (𝑍𝑎 +
𝑍𝑠 + 𝑍 𝑓 )), where 𝜎 (·) is the sigmoid function.

3.2 Counterfactual Debiasing Inference
We present counterfactual debiasing inference to exclude the pure
instance appearance effect through 𝐴 → 𝑌 to reduce appearance
bias. We denote the appearance model, the structure model and
the fusion module as𝑀𝐴 ,𝑀𝑆 and𝑀𝐹 respectively. Then we have
formulations below, where 𝑎 is RGB frames input and 𝑠 is tracklets
input:

𝑀𝐴 (𝑎) = {𝑍𝑎, 𝑓𝑎},
𝑀𝑆 (𝑠) = {𝑍𝑠 , 𝑓𝑠 },
𝑀𝐹 (𝑓𝑎, 𝑓𝑠 ) = 𝑍 𝑓 ,

(1)
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Figure 4: An overview of CDN implementation. There are no strict requirements in the specific implementation of the struc-
ture model and appearance model. The factual outcome is score fusion function’s activation based on three branches. The
counterfactual outcome is score fusion function’s activation based on appearance branch and two zero value as placeholders.

where 𝑓𝑎 and 𝑓𝑠 represent features extracted from the appearance
and structure backbone respectively. The final score

𝑍𝑎,𝑠,𝑓 = ℎ(𝑍𝑎, 𝑍𝑠 , 𝑍 𝑓 ), (2)

is gained by aggregating three paths activation directly connected
to 𝑌 using a fusion function ℎ.

We denote a random variable as a capital letter and represent the
corresponding observed value as a lowercase letter. The lowercase
letter with the superscript ∗ represents under no-treatment control
condition. For example, to recognize an action, 𝐴 = 𝑎 represents
having observed instance appearance in this action video, then
𝐴 = 𝑎∗ represents having not observed instance appearance.

To capture the appearance bias, we need to observe the causal
effect of direct path 𝐴 → 𝑌 when blocking the activation from
other pathways. However, neural networks cannot make an infer-
ence when fed with variables of the dummy value. Therefore, we
manually set the output to be a zero score for brevity instead of a
learnable score like [29] when the model input is a dummy value.
Our setting can be formalized as:

𝑍𝑎 =

{
𝑧𝑎 = 𝑀𝐴 (𝑎) 𝐴 = 𝑎

𝑧∗𝑎 = 0 𝐴 = 𝑎∗
, (3)

𝑍𝑠 =

{
𝑧𝑠 = 𝑀𝑆 (𝑠) 𝑆 = 𝑠

𝑧∗𝑠 = 0 𝑆 = 𝑠∗
, (4)

𝑍 𝑓 =

{
𝑧𝑓 = 𝑀𝐹 (𝑓𝑎, 𝑓𝑠 ) 𝐴 = 𝑎 𝑎𝑛𝑑 𝑆 = 𝑠

𝑧∗
𝑓
= 0 𝐴 = 𝑎∗ 𝑜𝑟 𝑆 = 𝑠∗

. (5)

Total effect [30] denotes the effect of individual and mediator
together on the outcome, which can be decomposed as the sum of
direct effect and indirect effect. Total effect of 𝐴 = 𝑎 and 𝑆 = 𝑠 on
the classification result 𝑌 can be represented as:

𝑇𝐸 = 𝑍𝑎,𝑠,𝑓 − 𝑍𝑎∗,𝑠∗,𝑓 ∗ , (6)

where 𝑍𝑎,𝑠,𝑓 is the inference outcome based on 𝐴 = 𝑎 and 𝑆 = 𝑠 ,
and 𝑍𝑎∗,𝑠∗,𝑓 ∗ is the inference outcome based on 𝐴 = 𝑎∗ and 𝑆 = 𝑠∗.
According to our causal graph, the effect of appearance information
𝐴 on classification result 𝑌 can be divided into direct effect 𝐴 → 𝑌

and indirect effect𝐴 → 𝐹 → 𝑌 . Counterfactual debiasing inference
aims for blocking the direct effect 𝐴 → 𝑌 while retaining the
indirect effect 𝐴 → 𝐹 → 𝑌 . In this way, we achieve removing the
bias while keeping the good context cue in appearance information.
Natural direct effect [30] denotes the effect of an individual on the
outcome with the blocked mediator. The direct effect of appearance
information can be captured using natural direct effect (NDE):

𝑁𝐷𝐸 = 𝑍𝑎,𝑠∗,𝑓 ∗ − 𝑍𝑎∗,𝑠∗,𝑓 ∗ . (7)

Finally, by doing a simple minus calculation as shown in Figure 3(b),
we subtract counterfactual inference outcome NDE from factual
inference outcome TE to eliminate visual bias and obtain a more
reasonable and accurate result, total indirect effect [30] (TIE):

𝑇 𝐼𝐸 = 𝑇𝐸 − 𝑁𝐷𝐸 = 𝑍𝑎,𝑠,𝑓 − 𝑍𝑎,𝑠∗,𝑓 ∗ . (8)

In our implementation, a hyperparameter 𝛼 controls the proportion
of NDE we want to remove from TE.

We formalize the implementation of TIE as follow:

𝑇 𝐼𝐸 = 𝑍𝑎,𝑠,𝑓 − 𝛼 · 𝑍𝑎,𝑠∗,𝑓 ∗ . (9)

We choose the classification result with the highest TIE, which
is different from the traditional method based on the posterior
possibility.

3.3 Framework Implementation
We propose a framework CDN with implementations based on the
causal graph built before. Thanks to our causal graph and model
framework, other modules can be embedded into our CDN so long
as the corresponding output has the same semantic information.

Note that without loss of generality, we implement our model
as simply as possible. For the appearance model, we choose I3D
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Figure 5: (a) Existing frameworks for compositional action
recognition. (b) Different from existing frameworks, a three-
branch framework is designed corresponding to our causal
graph. Note that the debiased effect is set as the criterion,
which is different from traditional posterior probability.

as our feature extractor backbone because of its generality and
simplicity. With the guidance of instance bounding boxes anno-
tated [18, 27] or detected [17, 40] in each video frame, instance-level
appearance features can be gained by using RoI-pooling [16, 33].
The video-level action appearance feature is generated by average
pooling all instance appearance features in both spatial and tem-
poral space. Our action structure model adopts the similar way
in [27] that takes instance bounding box coordinates and its iden-
tity embedding as input and feeds them into fully connected layers
to obtain instance-centric representation. We get the frame-level
representation through performing pair-wise reasoning between
instances at each frame and aggregate these frame descriptors in
the temporal domain to get the video-level action structure feature.
We use a concatenation operation followed with an MLP as our
fusion module.

In training stage, inspired by Counterfactual VQA [29], two
auxiliary loss items are added into our model to stabilize the causal
influence of each independent branch. Without these auxiliary loss
items, the model tends to converge to a single branch which con-
verges fastest. That would lead other branch activation to output
meaningless perturbations. The whole loss function can be formal-
ized as follow

L = L𝐹 (𝑎, 𝑠, 𝑓 ) + L𝐴 (𝑎) + L𝑆 (𝑠), (10)

where L𝐹 (𝑎, 𝑠, 𝑓 ), L𝐴 (𝑎) and L𝑆 (𝑠) are cross-entropy losses over
𝑍𝑎,𝑠,𝑓 , 𝑍𝑎 and 𝑍𝑠 .

During inference stage, we use the outcome of counterfactual
debiasing inference, total indirect effect, as the criterion, which is
implemented as Eq. (9).

4 EXPERIMENTS
4.1 Dataset
We validate our approach on the Something-Else [27] task, which
is the extension of the Something-Something V2 [15] dataset but
follows the compositional data split setting. The Something-Else
task defines a subset of frequent object categories (appearing in
more than 100 videos in the dataset) and splits it into two disjoint
groups, A and B. The total 174 action categories are divided into
two groups (1 and 2) as well. According to the splits of groups, each
video in the Something-Else dataset will be assigned as one of 1A,
1B, 2A, 2B. Then the training set is a collection of 1A + 2B and
the validation set is 1B + 2A. As a result, there are 112,795 videos
(54,919 for training and 57,876 for validation) with the composi-
tional setting.

4.2 Implementation Details
We sample 16 frames for RGB input and 8 frames for bounding box
tracklets input (follow the parameter settings in [27]). We use the
ground-truth bounding boxes annotations released in [27]. I3D [3]
is selected as the backbone of our appearance model and initialized
with Kinetics-400 [20] pre-trained weights. The dimension of both
video appearance feature and structure feature is 𝑑 = 512. The
structure model of our CDN is trained for 30 epochs with a learning
rate 0.01 using SGD with 0.0001 weight decay and 0.9 momentum,
the learning rate is decayed by the factor of 10 at epochs 24. The
learning rate of the appearance model in CDN is set to 0.6 times
that of the structure model. We set a batch size of 16 and implement
our method using PyTorch on 4 Nvidia GeForce RTX 2080Ti GPUs.

4.3 Methods and Baselines
To validate the effectiveness of our CDN, we compare CDN with
the recent methods in the follows:

• I3D [3]: Applying 3D convolution over RGB frames to obtain
action representations.

• STIN [27]: Leveraging instance bounding boxes and cat-
egory information to represent instances and performing
spatial-temporal interaction to model the geometric relation
transformation of actions.

• SAFCAR [21]: A two-branch model takes RGB frames and
instance tracklets as input and fuses the two branch infor-
mation with an attention module.

• Interactive Fusion [44]: Fusing information from appear-
ance and tracklets information in object-level and designing
an auxiliary prediction task to guide the fusion process to
represent actions.

• CDNw/o CF: A basic version of our approach with the Log-
sigmoid Sum fusion function using the traditional posterior
probability as criterion. Note that counterfactual debiasing
inference is not used in this basic version.
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• CDN: The complete version our of approach with the Log-
sigmoid Sum fusion function using our total indirect effect
observed from the difference between factual inference re-
sults and counterfactual inference results as criterion.

Figure 5(a) shows the input information and overall architectures
of existing compositional action recognition models. Figure 5(b)
shows a brief training and test pipeline of our approach CDN.

4.4 Results
As shown in Table 2, methods that use the appearance and structure
information both within an action outperform than those process-
ing only the single one, which means that instance appearance
information brings prior knowledge for compositional action recog-
nition. Based on the causal graph, our designedmodel CDN achieves
slightly higher performance than baseline methods by using tradi-
tional posterior probability as the criterion. After applying counter-
factual debiasing inference, CDN can easily improve its prediction
accuracy on Top-1 (1.7%) and Top-5 (0.9%) by using total indirect
effect as the criterion. This shows that our counterfactual debiasing
inference could mitigate the bias and keep effective cues in appear-
ance information by only adopting a minor modification during the
test stage. Overall, the complete result of our CDN outperforms
state-of-the-art performance [21, 27, 44] with a noticeable margin.

Table 2: Recognition accuracy comparison against state-of-
the-art methods on the Something-Else dataset.

Method Input Something-Else
RGB Track Top-1 (%) Top-5 (%)

I3D [3] o 50.5 76.9
STIN [27] o 51.4 79.3
STIN+I3D [27] o o 54.6 79.4
Interactive Fusion [44] o o 59.6 85.8
SAFCAR [21] o o 60.5 84.3

Our CDN w/o CF o o 62.8 87.3
Our CDN o o 64.5 88.2

4.5 Ablation Study
Fusion function: Note that the score fusion function is an indis-
pensable part instead of an ensemble trick for CDN. Both the factual
and counterfactual outcomes are calculated by the fusion function.
Therefore, the model cannot give any output when using CF with-
out the fusion function. For reference, we provide the performance
of each single model without fusion function and CF as shown
in Table 3. We try Naive Sum and Log-sigmoid Sum respectively
to generate the final prediction results. We only substitute Naive
Sum function with Log-sigmoid Sum function, leading to a per-
formance improvement. This suggests that the selection of score
fusion function has a great impact on the final prediction results.

Effect of different TIE parameter 𝛼 : The hyperparameter 𝛼
used in our implementation controls the trade-off between total
indirect effect and total effect. The higher value of 𝛼 , the less de-
pendent on appearance information of model prediction results.

Table 3: Ablation of fusion function effectiveness on CDN.

Method Something-Else
Top-1 (%) Top-5 (%)

Single Appearance Model 58.9 84.1
Single Structure Model 53.8 80.5
Single Fusion Module 34.0 63.6

CDN w/o CF (Naive Sum) 60.1 85.0
CDN w/o CF (Log-sigmoid Sum) 62.8 87.3

CDN (Naive Sum) 62.8 87.2
CDN (Log-sigmoid Sum) 64.5 88.2
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Figure 6: Naive Sum and Log-sigmoid Sum used in accuracy
with different TIE weight.

When 𝛼 equals 0, total indirect effect on classification results 𝑍
degenerates into total effect, which is equivalent to results gained
from traditional inference strategies based on posterior probability.
As 𝛼 increases from 0 to 1, the performance of CDN first increases
and drops down around 𝛼=0.7 as shown in Figure 6. Here we select
𝛼=0.5 for Log-sigmoid Sum score fusion function and 𝛼=0.7 for
Naive Sum.

By searching for a proper value of 𝛼 , CDN successes in mitigating
the bias while keeping the good context in appearance informa-
tion. This further illustrates that a compromise between learning
action knowledge from visual information and totally discarding
visual cues is the most reasonable solution for compositional action
recognition.

Category Analysis: We compare the accuracy improvement
on individual action categories when applying counterfactual debi-
asing inference on our CDN. As illustrated in Figure 7, actions that
are more associated with instance appearance information benefit a
lot from our counterfactual analysis. For example, [pulling two ends
of something so that it separates into two pieces] depicts a situation
where objects appearance changing much, from a whole instance
into two pieces. [pouring something into sth. until it overflows] de-
scribes a scenario where liquid such as water and milk flows out of
a container.

Example Analysis: Figure 8 visualizes examples of how our
CDN performswhen applying counterfactual debiasing inference or
not. For example, [paper] is shared by action [squeezing something]
in test and action [poking a hole into something soft] in training.
Three objects occurring in [poking a hole into something soft] most

Poster Session 4 MM ’21, October 20–24, 2021, Virtual Event, China

3226



0 2 4 6 8 10 12 14
Difference on Top-1 Accuracy (%)

Pulling two ends of (sth.) so that it separates into two pieces

Piling (sth.) up

Pretending or failing to wipe (sth.) off of (sth.)

Pouring (sth.) into (sth.) until it overflows

Pretending to put (sth.) underneath (sth.)

Scooping (sth.) up with (sth.)

Pretending to scoop (sth.) up with (sth.)

Putting (sth.) similar to other things that are already on the table

(Sth.) colliding with (sth.) and both come to a halt

Pretending to put (sth.) onto (sth.)

14.7
13.7

11.1
10.0

9.54
9.38

8.51
8.35

7.97
7.54

Figure 7: Top 10 action categories on which counterfactual debiasing inference exceeds traditional inference.

W/o cf :  Poking a hole into [sth.] soft
With cf: Squeezing [sth.]

Poking a hole into [sth.] soft

Bias from 
paper

W/o cf :  Holding [sth.] in front of [sth.]
With cf: Touching part of [sth.]

Holding [sth.] in front of [sth.]

(a)

(b)

Bias from 
teddy bear

Figure 8: Visualization on representative samples. With cf represents applying counterfactual inference while W/o cf repre-
sents not applying counterfactual inference. The correct and false predictions are highlighted in green and red respectively.

frequently are [paper], [pillow] and [bread], accounting for 29.7%,
26.6%, and 9.4% respectively. This verifies the action [poking a hole
into something soft] is biased due to the high object correlation with
[paper] and [pillow]. Therefore, the correlation between [paper]
appearance and action [poking a hole into something soft] learned
from the training set misleads the model to give a wrong prediction
classification result if we use posterior probability as the criterion.
However, CDN can overcome its biased prior distribution learned
from the dataset with the help of counterfactual debiasing inference.
A correct answer can be given since it does not rely on the shortcut
provided by spurious appearance correlation through subtracting
the biased classification results from the total effect.

5 CONCLUSION
In this paper, we first observed that a spurious correlation between
instance appearance and action category exists, which badly in-
hibits the model’s ability of action learning. To solve this problem,
we presented a novel counterfactual framework for compositional
action recognition to provide an elegant solution for blocking the
shortcut that the model learned from pure vision bias. With the
help of counterfactual thinking, we captured the pure appearance
direct effect on classification scores, which would be subtracted
from total effect on the predictions. We validate our approach on
the Something-Else dataset, and a new state-of-the-art performance
is established by unbiased inference on our model framework.
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